NOTE

Another teacher made this – I have no idea if it is duplicate questions from the one I already gave you, I did not have time to check it! I thought I would give it to you anyway, just in case. I also have not checked to see if the answer key is correct. Let me know if you notice duplicates or any typos and I can try and update them if possible.

Dougherty Valley HS

Chemistry - Sol-Kin-Equal Review

- 1. A sample of a substance burns more rapidly in pure oxygen than in air. Which factor is most responsible for this high rate of reaction?
 - A) temperature
 - B) Surface area exposed to air
 - C) Catalyst
 - D) concentration of the substance
 - E) the properties of the reactants
- For the reaction A + B ← → 2C. if we start with 3.2E-2M of A and B. What is the concentrations of C at equilibrium given that K_{eq} = 5.2E-9?
 - A) 6.92E-21M
 - B) 7.39E-11M
 - C) 2.08E-11M
 - D) 4.16E-11M
 - E) 8.32E-11M
- 3. What volume of 16.3 *M* H₂SO₄ is required to prepare 12.0 L of 0.156 *M* sulfuric acid?
 - A) 1.25 L
 - B) 115 mL
 - C) 2.54 L
 - D) 212 mL
 - E) 104 mL
- At a certain temperature *K* for the reaction 2NO₂ <-->N₂O₄ is 7.5 liters/mole. If 2.0 moles of NO₂ are placed in a 2.0-liter container and permitted to react at this temperature, calculate the concentration of N₂O₄ at equilibrium.
 - A) 7.5 moles/liter
 - B) 0.82 moles/liter
 - C) 0.39 moles/liter
 - D) 0.65 moles/liter
 - E) none of these

5. Write the equilibrium expression for the following reaction: $S(s) + O_2(g) \rightleftharpoons SO_2(g)$

A)

$$K = \frac{[SO_2]^2}{[O_2]^2}$$
B)

$$K = \frac{[SO_2]^2}{[O_2]}$$
C)

$$K = \frac{[O_2]}{[SO_2]^2}$$
D)

$$K = \frac{[SO_2]^2}{[O_2]}$$
E)

$$K = onto of these$$

E) none of these

Use the following to answer questions 6-7: The following questions refer to the equilibrium shown here: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

- 6. What would happen to the system if the total pressure were increased by adding CO₂(*g*)?
 - A) The amount of CaO would increase.
 - B) Nothing would happen.
 - C) Equilibrium would shift to the right.
 - D) More $CO_2(g)$ would be produced.
 - E) The amount of CaCO₃ would increase.
- 7. What would happen to the system if the total pressure were increased by adding Ar(*g*)?
 - A) The amount of CaCO₃ would increase.
 - B) Nothing would happen.
 - C) Equilibrium would shift to the right.
 - D) The amount of CaO would increase.
 - E) More $CO_2(g)$ would be produced.

8. Determine the equilibrium constant for the system

$$\begin{split} N_2O_4 &<--> 2NO_2 \mbox{ at } 25^\circ C. \mbox{ The concentrations are shown} \\ here: & [N_2O_4] = 3.63 \times 10^{-2} \mbox{ M}, [NO_2] = 1.41 \times 10^{-2} \mbox{ M}. \\ A) & 5.48 \times 10^{-3} \\ B) & 0.151 \\ C) & 0.388 \\ D) & 1.83 \times 10^2 \\ E) & 2.57 \end{split}$$

- 9. An oven-cleaning solution is 40.0% (by mass) NaOH. If one jar of this product contains 468 g of solution, how much NaOH does it contain?
 - A) 187 g
 - B) 1.17×10^3 g
 - C) 18.7 g
 - D) 11.7 g
 - E) none of these
- 10. Consider the reaction $X \rightarrow Y + Z$ Which of the following is a possible rate law?
 - A) Rate = k[X][Y]
 - B) Rate = k[Z]
 - C) Rate = k[Y]
 - D) Rate = k[Y][Z]
 - E) Rate = k[X]
- 11. The correct equilibrium expression for the rxn of sulfur dioxide gas with oxygen gas to produce sulfur trioxide gas is

^{A)}
$$\frac{[SO_3]}{[SO_2]^2[O_2]}$$
^{B)}
$$[O_2][SO_2]^2$$

$$\frac{[SO_3]^2}{[SO_3]^2}$$

$$\frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

$$\overset{\text{D)}}{=} \frac{[\text{SO}_3]}{[\text{SO}_2][\text{O}_2]}$$

- E) none of these
- 12. Equilibrium is reached in chemical reactions when:
 - A) all chemical reactions stop.
 - B) the temperature shows a sharp rise.
 - C) the rates of the forward and reverse rxns become equal.
 - D) the forward reaction stops.
 - E) the []s of reactants and products become equal.
- 13. Catalysts generally affect chemical reactions by
 - A) lowering the reaction rate
 - B) providing an alternate pathway with a higher activation energy
 - C) increasing the surface area of teh reactants
 - D) increasing the temperature of the system
 - E) providing an alternate pathway with a lower activation energy
- 14. A 34.9-g sample of SrCl₂ is dissolved in 112.5 mL of solution. Calculate the molarity of this solution.
 - A) 0.0248 M
 - B) 3.28 M
 - C) 1.96 M
 - D) 0.220 M
 - E) none of these

- 15. The rate law for a particular reaction is rate = $k[A][B]^2$. If the initial concentration of B is increased from 0.1 M to 0.3 M, the initial rate will increase by which of the following factors?
 - A) 9
 - B) 3
 - C) 2 D) 12
 - E) 6
- 16. Calculate the molarity of the following aqueous solution $54g MgCl_2$ in 250ml of solution
 - A) 3.21M
 - B) 1.25M
 - C) 2.27M
 - D) 0.216M
 - E) 216M
- 17. Consider the reaction: 4NH₃ + 7O₂ → 4NO₂ + 6H₂O At a certain instant the initial rate of disappearance of the oxygen gas is X. What is the value of the appearance of water at the same instant?
 - A) 1.1 X
 - B) 0.58 X
 - C) 1.2 X
 - D) cannot be determined from the data
 - E) 0.86 X

Use the following to answer question 18:

Consider the following equilibrium: $H_2(g) + I_2(s) < --> 2HI(g)$

18. The proper K_{eq} expression is:

A)
$$\frac{[HI]}{\sqrt{([H_2])}}$$

B)
$$\frac{[H_2][I_2]}{[HI]}$$

C)
$$\frac{[HI]^2}{[H_2]}$$

D)
$$\frac{\sqrt{([H_2][I_2])}}{[HI]^2}$$

$$\stackrel{\text{(E)}}{=} \frac{[HI]^2}{[H_2][I_2]}$$

19. Tabulated below are initial rate data for the reaction $2\text{Fe}(\text{CN})_6^{3-} + 2\text{I}^- \rightarrow 2\text{Fe}(\text{CN})_6^{4-} + \text{I}_2$ Initial Run [Fe(CN) $[I^-]_0$ [Fe(CN)₆ $[I_2]_0$ Rate $6^{3-}]0$ ^{4–}]0 (M/s)1 0.01 0.01 0.01 $0.01 \ 1 \times 10^{-5}$ 2 0.01 0.02 0.01 $0.01 \ 2 \times 10^{-5}$ 3 0.02 0.01 $0.01 \ 8 \times 10^{-5}$ 0.02 4 0.02 0.02 0.02 $0.01 \ 8 \times 10^{-5}$ 5 0.02 0.02 0.02 0.02 8 \times 10⁻⁵ The experimental rate law is: A) $\Delta [I_2]$ Δt $= k [Fe(CN)_6^{3-})]^2 [I^-]$ B) Δ [I₂] Δt $= k[Fe(CN)_6^{3-}]^2[I^-]^2[Fe(CN)_6^{4-}]^2[I_2]$ C) $\Delta[I_2]$ Δt $= k[Fe(CN)_6^{3-}][I^-]^2$ D) $\Delta |\mathbf{I}_2|$ Δt $= k[Fe(CN)_6^{3-}][I^-] [Fe(CN)_6^{4-}]$ $\Delta[I_2]$ E) Δt $= k[Fe(CN)_6^{3-}]^2[I^-][Fe(CN)_6^{4-}][I_2]$

- 20. What volume of 12.0 *M* nitric acid is required to prepare 4.82 L of 0.100 *M* nitric acid?
 - A) 24.9 L
 - B) 0.482 L
 - C) 2.49 LD) 0.249 L
 - E) 0.0402 L
 - 2) 0101022
- ^{21.} $CaCl_2(s) + 2H_2O(g) < --> CaCl_2 \cdot 2H_2O(s)$ The equilibrium constant for the reaction as written is

A)

$$K = \frac{1}{2[H_2O]}$$
B)

$$K = [H_2O]^2$$
C)

$$K = \frac{1}{[H_2O]^2}$$
D)

$$K = \frac{[CaCl_2 \cdot 2H_2O]}{[H_2O]^2}$$
E)

$$K = \frac{[CaCl_2 \cdot 2H_2O]}{[CaCl_2][H_2O]^2}$$

- 22. As ice melts the energy in the reaction is
 - A) released
 - B) Absorbed
 - C) does not change
 - D) neither
 - E) Both a and b

23. Consider a system of four gases. The equilibrium concentration of each product is 1.8 *M*. The equilibrium concentrations of the reactants are equal. The equilibrium is shown here:

A + B <--> C + D K = 2.6What is the equilibrium concentration of gas A? A) 1.1 M B) 1.2 M C) 8.4 M D) 0.90 M E) 4.7 M 24. The average rate of disappearance of ozone in the reaction

- $2O_3(g) \rightarrow 3O_2(g)$ is found to be 8.12×10^{-3} atm over a certain interval of time. What is the rate of appearance of O_2 during this interval?
- A) 268×10^{-3} atm/s
- B) 5.41×10^{-3} atm/s
- C) 22.0×10^{-3} atm/s
- D) 8.12×10^{-3} atm/s
- E) 12.2×10^{-3} atm/s

Use the following to answer questions 25-26: Consider the following data concerning the equation:

H_2			
$[H_2O_2]$	[I ⁻]	$[H^+]$	rate
0.100 M	$5.00 imes 10^{-4} \mathrm{M}$	$1.00 \times 10^{-2} \mathrm{M}$	0.137 M/sec
0.100 M	$1.00 \times 10^{-3} \mathrm{M}$	$1.00 \times 10^{-2} \mathrm{M}$	0.268 M/sec
0.200 M	$1.00 \times 10^{-3} \mathrm{M}$	$1.00 \times 10^{-2} \mathrm{M}$	0.542 M/sec
0.400 M	$1.00 \times 10^{-3} \mathrm{M}$	$2.00\times10^{2}M$	1.084 M/sec

25. The average value for the rate constant k (without units) is

- A) 2.74×10^4
- B) 137
- C) 108
- D) 2710
- E) none of these

26. The rate law for this reaction is

- A) rate = $k[I^-][H^+]$
- B) rate = $k[H_2O_2][H^+]$
- C) rate = $k[H_2O_2][I^-]$
- D) rate = $k[H_2O_2][I^-][H^+]$
- E) rate = $k[H_2O_2]^2[I^-]^2[H^+]^2$
- 27. Which of the following processes is exothermic?
 - A) reacting hydrogen and oxygen gases to make water
 - B) allowing meat to thaw after taking it out of the freezer
 - C) rolling a ball up a hill
 - D) a popsicle melting on a warm summer day
 - E) boiling water in a beaker to make steam
- 28. A 108.7-g sample of nitric acid solution that is 70.0% HNO₃ (by mass) contains
 - A) 4.80 \times 10³ mol HNO₃
 - B) 1.72 mol HNO₃
 - C) 76.1 mol HNO₃
 - D) 1.21 mol HNO₃
 - E) none of these

I II.

III.

IV.

- 29. In a KCl Solution, water is the _____, and Potassium Chloride is the _____.
 - A) Solution, Solute
 - B) Solute, Solution
 - C) Solute, Solvent
 - D) Solvent, Solute
 - E) Solvent, Solution
- 30. For a reaction in which A and B react to form C, the following initial rate data were obtained:

[4	A]	[B]	Initial Rate of Formation
			of C
(mo	ol/L)	(mol/L)	$(\text{mol/L}\cdot\text{s})$
0.	10	0.10	1.00
0.	10	0.20	4.00
0.	20	0.20	8.00
What is the rate law?			
A)	Rate =	$= k[A]^3$	
B)	Rate =	= k[A][B]	
C)	Rate =	$= k[\mathbf{A}]^2[\mathbf{B}]$	
D)	Rate =	$= k[A][B]^2$	

E) Rate = $k[A]^2[B]^2$

Use the following to answer questions 31-32: Given the equation $A(g) \rightleftharpoons B(g) + 2C(g)$. At a particular temperature, $K = 1.4 \times 10^5$.

- 31. Raising the P by decreasing the V of the container
 - A) will have no effect
 - B) cannot be determined
 - C) will cause [B] to increase
 - D) will cause [A] to increase
 - E) none of the above

- 32. If you mixed 1.2 mol B, 0.050 mol C, and 0.003 mol A in a 1-L container, in which direction would the reaction initially proceed?
 - A) to the right
 - B) The mixture is in the equilibrium state.
 - C) to the left
 - D) cannot tell from the information given
- 33. You have two solutions of sodium chloride. One is a 2.00 *M* solution, the other is a 4.00 *M* solution. You have much more of the 4.00 *M* solution, and you add the solutions together. Which of the following could be the concentration of the final solution?
 - A) 7.20 *M*
 - B) 2.60 M
 - C) 6.00 *M*
 - D) 3.00 M
 - E) 3.80 *M*
- 34. Which factor below will allow you to dissolve a great amount of solute and fast?
 - A) agitate
 - B) surface area
 - C) stir
 - D) heat
 - E) cool
- 35. Which solute below will conduct electricity?
 - A) Sugar
 - B) oil
 - C) water
 - D) electrolyte
 - E) non-electrolyte

Answer Key	11. C	24. E
	12. C	25. D
1. D	13. E	26. C
2. E	14. C	27. A
3. B	15. A	28. D
4. C	16. C	29. D
5. D	17. E	30. D
6. E	18. C	31. D
7. B	19. A	32. A
8. A	20. E	33. E
9. A	21. C	34. D
10. E	22. B	35. D
	23. A	